Speaker Identification in a Shouted Talking Environment Based on Novel Third-Order Circular Suprasegmental Hidden Markov Models
نویسنده
چکیده
It is well known that speaker identification yields very high performance in a neutral talking environment; on the other hand, the performance has been sharply declined in a shouted talking environment. This work aims at proposing, implementing, and evaluating novel Third-Order Circular Suprasegmental Hidden Markov Models (CSPHMM3s) to improve the low performance of text-independent speaker identification in a shouted talking environment. CSPHMM3s possess combined characteristics of: Circular Hidden Markov Models (CHMMs), Third-Order Hidden Markov Models (HMM3s), and Suprasegmental Hidden Markov Models (SPHMMs). Our results show that CSPHMM3s are superior to each of: First-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM1s), Second-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM2s), Third-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM3s), First-Order Circular Suprasegmental Hidden Markov Models (CSPHMM1s), and Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) in a shouted talking environment. Using our collected speech database, average speaker identification performance in a shouted talking environment based on LTRSPHMM1s, LTRSPHMM2s, LTRSPHMM3s, CSPHMM1s, CSPHMM2s, and CSPHMM3s is 74.6%, 78.4%, 81.7%, 78.7%, 83.4%, and 85.8%, respectively. Speaker
منابع مشابه
Emirati-Accented Speaker Identification in each of Neutral and Shouted Talking Environments
This work is devoted to capturing Emirati-accented speech database (Arabic United Arab Emirates database) in each of neutral and shouted talking environments in order to study and enhance text-independent Emirati-accented “speaker identification performance in shouted environment” based on each of “First-Order Circular Suprasegmental Hidden Markov Models (CSPHMM1s), Second-Order Circular Supras...
متن کاملEmploying Second-Order Circular Suprasegmental Hidden Markov Models to Enhance Speaker Identification Performance in Shouted Talking Environments
Speaker identification performance is almost perfect in neutral talking environments. However, the performance is deteriorated significantly in shouted talking environments. This work is devoted to proposing, implementing, and evaluating new models called Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) to alleviate the deteriorated performance in the shouted talking environ...
متن کاملSpeaker Identification in the Shouted Environment Using Suprasegmental Hidden Markov Models
In this paper, Suprasegmental Hidden Markov Models (SPHMMs) have been used to enhance the recognition performance of text-dependent speaker identification in the shouted environment. Our speech database consists of two databases: our collected database and the Speech Under Simulated and Actual Stress (SUSAS) database. Our results show that SPHMMs significantly enhance speaker identification per...
متن کاملEnhancing speaker identification performance under the shouted talking condition using second-order circular hidden Markov models
It is known that the performance of speaker identification systems is high under the neutral talking condition; however, the performance deteriorates under the shouted talking condition. In this paper, second-order circular hidden Markov models (CHMM2s) have been proposed and implemented to enhance the performance of isolated-word text-dependent speaker identification systems under the shouted ...
متن کاملSpeaker Identification in each of the Neutral and Shouted Talking Environments based on Gender-Dependent Approach Using SPHMMs
It is well known that speaker identification performs extremely well in the neutral talking environments; however, the identification performance is declined sharply in the shouted talking environments. This work aims at proposing, implementing and testing a new approach to enhance the declined performance in the shouted talking environments. The new proposed approach is based on gender-depende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CSSP
دوره 35 شماره
صفحات -
تاریخ انتشار 2016